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Intermittency and the slow approach to Kolmogorov scaling

B. Holdom*

Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7
~Received 9 January 1997!

From a simple path integral involving a variable volatility in the velocity differences, we obtain velocity
probability density functions with exponential tails, resembling those observed in fully developed turbulence.
The model yields realistic scaling exponents and structure functions satisfying extended self-similarity. But
there is an additional small-scale dependence for quantities in the inertial range, which is linked to a slow
approach to Kolmogorov@Dokl. Akad. Nauk30, 9 ~1941!# scaling occurring in the large-distance limit.
@S1063-651X~97!07806-9#

PACS number~s!: 47.27.Eq, 47.27.Gs, 47.27.Jv
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The universal features displayed by fully developed h
drodynamic turbulence are still not fully understood. Ko
mogorov @1,2# showed how a set of statistical quantiti
known as structure functions are expected to depend on
length scaler as power laws with predicted exponents. E
perimental measurements have indicated that while th
predictions are close to the truth, the predicted exponents
not exactly realized. In the face of this experimental inp
much effort has been devoted towards understanding the
gin of these anomalies in the scaling exponents, while ret
ing the notion that current experiments are observing an ‘
ertial range’’ where strict power-law scaling holds.

In this paper we will investigate what appears to be
loophole in this reasoning. In spite of impressive advan
made in the experimental studies, the fact remains that
scaling exponents have been deduced by looking at sca
regions extending over little more than one decade inr
@3–6#. This leaves open the possibility that a small but s
nificant departure from strict power-law scaling is still co
sistent with the data. We will argue that this possible dep
ture is sufficient to allow the observed anomalies in
exponents to be nothing more than a transient effect rel
to intermittency and that the true power-law scaling occ
only on larger scales. This very large distance scaling co
take the form proposed by Kolmogorov.

We shall present a model that predicts deviations fr
power-law scaling and shows that these deviations may
small enough to have escaped detection thus far. The m
is based on a simple physical picture for the effects of in
mittency, which are effects due to the coming and going
coherent structures in the velocity field. We will model t
effects that these structures~eddies! have directly on the
probability distribution function~PDF! for velocity differ-
ences. We are claiming simplicity in our approach, but
uniqueness. Thus the applicability to three-dimensional
drodynamical turbulence in particular could be conside
speculative since the model makes no mathematical con
with the Navier-Stokes equations. On the other hand, w
the consequences of the model are explicitly worked out t
are found to coincide rather well with the data.

*Electronic address: holdom@utcc.utoronto.ca
551063-651X/97/55~6!/7000~5!/$10.00
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Only the symmetric part of the observed PDF will b
modeled in this paper. This is denoted byPr(dv r), where
dv r is the difference in some velocity component at tw
points separated by a distancer . The model will yield an
explicit expression for the PDF that~i! for small r has the
typical sharp peak and broad tails characteristic of interm
tent behavior,~ii ! at any finiter displays exponential tails a
large enoughdv r , and~iii ! tends toward a Gaussian form i
the large-r limit. But the model shows that these realist
features may in fact be implying that the values of the sc
ing exponents are slightly scale dependent, as they ev
from their observed ‘‘anomalous’’ values for the values
r where they are presently measured, to the pure Kolm
orov values in the large-r limit.

We consider a discrete set of points on the line connec
the two points separated by distancer . We label the points
by their distance from one end (0,r 1 ,r 2 , . . . ,r N ,r N11),
wherer N115r . We start by assuming thatPr(dv r) can be
approximated by

PN~v r2v0!5F)
l51

N E
2`

`

dv r lGP~v r2v rN!

3P~v rN2v rN21
!•••P~v r12v0!, ~1!

with *2`
` P(y)dy51. We assume that the set of pointsr j is

characterized by a scaler such that (r j /r)
a5 j , where

j51,2, . . . ,N11 anda is a positive constant to be dete
mined below. The integration over all velocities at the inte
mediate points may be thought of as a sum over all path
the space of velocities that start atv0 and end atv r . We
could thus refer to Eq.~1! as a path integral. But note that w
refrain from taking the continuum limitN→` with r fixed
since the scaler has a physical significance.

The discretization of the range from 0 tor into subregions
(r j ,r j11) is associated with our modeling of intermittent b
havior. Roughly speaking, we are suggesting that the com
and going of eddies, of sizes comparable to subregion
r j112r j , produce avariable volatility in the typical velocity
differencesv r j11

2v r j . We make this statement precise b

writing P(v r j2v r j21
) as a superposition of Gaussians, whe
7000 © 1997 The American Physical Society
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55 7001INTERMITTENCY AND THE SLOW APPROACH TO . . .
we integrate over all values of a volatility parametersj ,
which is itself weighted according to a Gaussian. To simp
notation we denotev r j5xj ,

P~xj2xj21!5E
2`

`

PGauss~sjs,xj2xj21!exp~2sj
2!
dsj

A2p
,

~2!

PGauss~s,x!5
1

A2ps
expS 2

x2

2s2D . ~3!

The consideration of large and small values ofsj corre-
sponds to the possible presence or absence of eddies in
subregion at various times. Note that the variance of b
P(xj2xj21) andPGauss(s,x) is s2.

Equation~1! is constructed to give the cumulative effe
of the variable volatilities occurring in the various subr
e

-

se
-

hat
th

gions.r should be typical of scales on which viscosity infl
ences and damps the formation of eddies. As suchr is ex-
pected to lie between the dissipative~Kolmogorov! scaleh
and the lower end of the inertial scaling range~the latter
range being characterized by the absence of viscosity
fects!. Note that if 0,a,1 then the size of the subregio
r j112r j , and thus the relevant eddy size for that subregi
would increase withj .

We proceed by inserting Eq.~2! into Eq.~1! and integrat-
ing over thexj . We can write the terms in the exponenti
that depend ony[(x1 ,x2 , . . . ,xN) in matrix notation
yTMy1Jy, whereM is a matrix andJ is a vector, with the
latter depending onx0 and xN11. We may complete the
square and do the Gaussian integrations overy for various
values ofN. From this we are able to deduce a simple res
where all dependence on thesj now resides in
Ŝ2[( j51

N11sj
2 . The sj integrations for fixedŜ then just give

the surface area of an (N11)-dimensional sphere
PN~xN112x0!5
1

s~2p!N/211F)
j51

N11 E
2`

`

dsjG 1
Ŝ
expS 2

~xN112x0!
2

2s2Ŝ2
2
1

2
Ŝ2D

5
1

s~2p!N/211S 2p~N11!/2

GSN11

2 D D E0`dŜŜN21expS 2
~xN112x0!

2

2s2Ŝ2
2
1

2
Ŝ2D

5
@~N11!/2#N/2

sApGSN11

2 D E0
`

dSSN21expS 2
~xN112x0!

2

2s2S2~N11!
2
1

2
S2~N11! D . ~4!
n
le

le

d

In

than

y

In the last step we have definedS2[Ŝ2/(N11) for conve-
nience.

Finally, we will take this result and analytically continu
from integer valuesN11 to positive real valuest. Replacing
N11 by t[(r /r)a gives @7#

Pr~dv r !5
~t/2!~t21!/2

sApG~t/2!
E
0

`

dSSt22expS 2
~dv r !

2

2s2S2t
2
1

2
S2t D .

~5!

We note that for larget the integral overS becomes strongly
peaked aboutS51 and thus

Pr~dv r ! →
t→`

1

sA2pt
expS 2

~dv r !
2

2s2t D . ~6!

In addition we find,for anyt, that the variance in the veloc
ity differences is

^~dv r !
2&5s2t5s2~r /r!a. ~7!

The variablet controls the evolution of the PDF, in the sen
that evolution through unit steps int are generated by suc
cessive application of the ‘‘evolution operator’’ in Eq.~2!. In
this senset is an ‘‘evolutionary’’ time scale depending o
the distance scaler . There is also a dynamical time sca
associated with scaler , the eddy turnover time, which is
simply r /v, wherev is a typical velocity observed on sca
r . If we associatev with sAt from Eq. ~7! and if the evo-
lutionary and dynamical times happen to scale withr in the
same way, then we obtaina52/3. This gives the standar
scaling law^(dv r)

2&}r 2/3.
We now perform the integral overS and rescale the PDF

such that the variance is unity for allt. We obtain

P̂t~x!5
t [1/4]~11t!

Ap2~1/2!~t21!G(12 t)
uxu~1/2!~t21!K ~1/2!~t21!~uxut1/2!.

~8!

Kn(y) is the modified Bessel function of the second kind.
Fig. 1 we displayP̂t(x) for varioust.

Whent is an even integer,P̂t(x) is an exponential times
a polynomial inx and in particular fort52 it is purely
exponential,P̂2(x)5exp(2uxuA2)/A2. Fort,2 the PDF is
even more strongly peaked and it decreases less quickly
an exponential~‘‘stretched exponential’’! before becoming
purely exponential at large enoughx. For t.2 we have
‘‘deformed Gaussians’’ with exponential tails. For an
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7002 55B. HOLDOM
t, dlnP̂t(x)/dx→
x→`

2At. Alternatively we may conside

momentsM t
n[* P̂t(x)uxundx, which are all finite and given

by

M t
n5

2n

Aptn

GS n11

2 DGS n1t

2 D
GS t

2D
. ~9!

The approach to the exponential tails is reflected
M t

n11/(n11)M t
n →
n→`

1/At.

It is common to describe the evolution of the PDF w
r in terms of the generalized structure functions, defined
Sn(r )5^udv r un&. For r in the inertial range it is usually as
sumed thatSn(r )}r

zn. Our model suggests that exactly sca
independent exponents do not exist for the typical range
r considered and that instead we should consider the l
exponentszn(r )[dln@Sn(r)#/dln(r). We obtain

zn~r !5
a

2
t@C„

1
2 ~n1t!…2C~ 1

2 t!#, ~10!

whereC is the digamma function. This givesz2(r )5a, and
in the larger limit zn(`)5an/2. The latter is Kolmogorov
scaling whena52/3. Although we adopt this value ofa in
the following, we leave open the question of whethera is
exactly equal to 2/3 or just close to it@8#. We also stress tha
we are describing only the symmetric part of the obser
PDF, which in the case of the PDF for longitudinal veloc
differences also has an asymmetric part. This asymmetr
reflected by the nonvanishing of the structure functio
^dv ir

n & for oddn. In particular ourz3 is not the same as th
scaling exponent of̂dv ir

3 &, which is constrained to be unit
@2,9#.

In Fig. 2 we displayzn(r ) for variousr and compare it to
the large-r limit values zn5n/3. The main point is that the
scaling exponents approach their asymptotic values v
slowly. It is also of interest that for some range ofr /r, our
exponents are realistic for a wide range ofn. We show this
by comparing them to the model of She and Leveque@10#,

FIG. 1. log10@ P̂t(x)# vs x for t51/2,1,2,4,8,16,32 from top to
bottom. The curves are vertically displaced b
0.5,0,20.5,21,21.5,22,22.5, respectively.
n

y

of
al

d

is
s

ry

which yieldszn
SL5n/91222(2/3)n/3 and is known to fit the

current data quite well. We may phrase the agreement in
terms of the relative scaling exponentszn /z3, which are
known to better accuracy@3–6# than the individual expo-
nents and for which the factora in Eq. ~10! cancels. We find,
for example, thatzn(35r)/z3(35r) as a function ofn is
within a few percent of the corresponding She-Leveque val-
ues up ton530! As r varies from 20 to 50,z6(r )/z3(r ), for
example, varies from 1.72 to 1.82, compared to
z6
SL/z3

SL51.78.
To see ther dependence of the structure functions them-

selves we displaySn(r ) in Fig. 3. Over some range ofr the
lines appear to be close to straight. But other than for
n52, which is exactly straight, the lines have a positive
curvature that increases for largern. We will see below how
these positive curvatures or, equivalently, the scale depen-
dence of the scaling exponents may be rather subtle to ob-
serve experimentally. But first we must consider the effects
of viscosity on the structure functions.

We expect that the effects of viscosity will cause
t5(r /r)2/3 to be replaced by a functionf (r ) that deviates
from (r /r)2/3 as r approaches the dissipative scaleh from
above. Since a decreasingt corresponds to increasing inter-
mittency and since the cause of intermittency in our

FIG. 2. zn(r ) vsn for r /r510,20,40,80,160 from bottom to top.
The dashed line iszn5n/3.

FIG. 3. log10@Sn(r )# vs log10(r ) with r51 for n52,4,6,8,10
from bottom to top, each line vertically offset so as to vanish at
r51.
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55 7003INTERMITTENCY AND THE SLOW APPROACH TO . . .
picture—variable volatility of velocity differences—shou
be damped by viscous effects, we expect thatf (r ) should
start to decrease more slowly than (r /r)2/3. Thus the evolu-
tion of the PDF shapes is retarded by viscous effects in
‘‘intermediate viscous range,’’ the range ofr betweenh and
the start of the inertial range. The implication is that at lar
scales in the inertial range wheref (r )5(r /r)2/3 it is likely
thatr.h. We may also expect thatr/h grows with the size
of the intermediate viscous range.

For very smallr where the velocity field is smooth th
variance is evolving liker 2, faster than in the inertial range
and thus there must clearly be a decoupling between
evolution of the PDF shapes and the evolution of the P
variance. We are thus led to a generalization of our mo
where we replace the expression in Eq.~5! by @11#

Pr~dv r !5
@ f ~r !/2# [ f ~r !21]/2

Apg~r !/ f ~r !G~ f ~r !/2!
E
0

`

dSSf ~r !22

3expS 2
~dv r !

2

2S2g~r !
2
1

2
S2f ~r ! D . ~11!

This new PDF has the property that^(dv r)
2&5g(r ) and thus

we can useg(r ) to reproduce the observed behavior of t
variance even in regions where viscosity or finite-size effe
are important. The functionf (r ) determines the evolution o
the PDF shapes; that is, the presentP̂r(x) is obtained from
the one in Eq.~8! by replacingt with f (r ).

We will illustrate the effects of viscosity with specifi
choices for f (r ) and g(r ). We consider f (r )
5(@r1r2h#/r)2/3, which is unity atr5h and approaches
(r /r)2/3 at larger @12#. For g(r ) in the rangeh,r,104h
we consider

g~r !5@c12c2e
[12r /h]/c42c3e

[12104~h/r !]/c5#~r /h!2/3.

We take two examples for (c1 ,c2 ,c3 ,c4 ,c5) that idealize
typical data sets:g1(r ) with (80,79,60,10,5) having a rela
tively large inertial range~large Reynolds number! and
g2(r ) with (80,79,70,5,30) having a small inertial range. O
results are not very sensitive to precisely show how th
functions deviate fromr 2/3 behavior outside the inertia
range. Note that the intermediate viscous range is larger
g1(r ) @13#. Due to our expectation thatr should increase
with the size of the intermediate viscous range, it is natu
that r1.r2. For illustrative purposes only, we choos
r154.3h andr251.3h.

With this input we can extract all higher-order structu
functions from Eq.~11!. The scaling in the inertial range fo
both cases turns out~because of our fortuitous choice ofr1
and r2) to be described by the realistic scaling expone
zn(35r) from Eq. ~10!. We show this in Fig. 4, where we
plot Sn(r )/r

zn(35r) @14#. Of most interest are then58,10
curves for theg1(r ) case, where we see~very slight! evi-
dence of a double-hump structure growing more promin
with increasingn. This positive curvature in the middle o
the scaling region is arising from the positive curvatures
Fig. 3, which in turn is a reflection of the gradual approach
Kolmogorov scaling. This is the generic signature of o
model, which should be seen when the size of the iner
e
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range and the ordern are both large enough. The figure
makes it clear, though, that it is a small effect that may b
hidden in present data.

Our model may also be used to illustrate ‘‘extended sel
similarity’’ @15,6#. In Fig. 5 we plotSn(r ) versusS3(r ) for
4,r /h,104 for the two casesg1(r ) and g2(r ). For com-
parison we add straight lines with slopes given by the rel
tive exponentszn(35r)/z3(35r). We see that scaling has
been extended to smaller scales than is apparent in Fig.
Similar results are obtained for other choices of the function
f (r ) and g(r ). It thus appears that such plots are not ver
sensitive to the deviations from the power-law scaling we a
proposing.

We reiterate that the model yields a universal set oflocal
scaling exponents and the scaling exponent from an expe
ment depends on what distance scale, effectively, the loc
scaling exponent is being measured relative tor. On the
other hand, if it is true thatr/h increases with the size of the
intermediate viscous region, as we are suggesting, then
may be difficult to obtain measurements at distances, in un
of r, that are very different from each other. The variability

FIG. 4. log10@Sn(r )/r
zn(35r)# vs log10(r ) with h51 for

n53,6,8,10 from bottom to top. The solid and dashed lines corr
spond tog1(r ) andg2(r ), respectively.

FIG. 5. log10@Sn(r )# vs log10@S3(r )# for 4,r /h,104 and for
n56,8,10 from bottom to top. The lines for theg1(r ) and g2(r )
cases are displaced by 0.5 and20.5, respectively. The dashed
straight lines have slopeszn(35r)/z3(35r).
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7004 55B. HOLDOM
in the scaling exponents is also obscured if different exp
ments have intermediate viscous regions of similar s
and/or if one is confined to the lower-order structure fun
tions, such asn56 and below.

We have seen how viscosity and finite-size effects
have the effect of transforming the structure functions in F
3 into the structure functions in Fig. 4, which in turn displ
extended self-similarity in Fig. 5. It is also encouraging
find that realistic values of the scaling exponents eme
when ther parameter is within the intermediate visco
range. But perhaps most important is that the model sugg
v

il-

ia

os
i-
e
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n
.
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sts

how evidence for a slow approach to Kolmogorov scali
could eventually be uncovered. We should also differenti
between the evolution of the PDF shapes as a functionr
~to which the structure functions are sensitive! and the basic
set of shapes predicted by the model, given in Eq.~8! and
depicted in Fig. 1. These probability density functions m
be of interest in various other contexts.

I thank Brian Smith for discussions. This research w
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