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Intermittency and the slow approach to Kolmogorov scaling

B. Holdom'
Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7
(Received 9 January 1997

From a simple path integral involving a variable volatility in the velocity differences, we obtain velocity
probability density functions with exponential tails, resembling those observed in fully developed turbulence.
The model yields realistic scaling exponents and structure functions satisfying extended self-similarity. But
there is an additional small-scale dependence for quantities in the inertial range, which is linked to a slow
approach to KolmogoroyDokl. Akad. Nauk30, 9 (1941)] scaling occurring in the large-distance limit.
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PACS numbdis): 47.27.Eq, 47.27.Gs, 47.27.Jv

The universal features displayed by fully developed hy- Only the symmetric part of the observed PDF will be
drodynamic turbulence are still not fully understood. Kol- modeled in this paper. This is denoted By(dv,), where
mogorov [1,2] showed how a set of statistical quantities dv, is the difference in some velocity component at two
known as structure functions are expected to depend on thepints separated by a distance The model will yield an
length scaler as power laws with predicted exponents. Ex-explicit expression for the PDF tha) for smallr has the
perimental measurements have indicated that while thes¥pical sharp peak and broad tails characteristic of intermit-
predictions are close to the truth, the predicted exponents afént behavior(ii) at any finiter displays exponential tails at
not exactly realized. In the face of this experimental input,large enoughsv, , and(iii) tends toward a Gaussian form in
much effort has been devoted towards understanding the oriP larger limit. But the model shows that these realistic
gin of these anomalies in the scaling exponents, while retainf€atures may in fact be implying that the values of the scal-

ing the notion that current experiments are observing an “iniN9 exponents are slightly scale dependent, as they evolve
ertial range” where strict power-law scaling holds from their observed “anomalous” values for the values of

In this paper we will investigate what appears to be o where they are presently measured, to the pure Kolmog-

loophole in this reasoning. In spite of impressive advance§™Y values_ in the I_arge-||m|t. : : :
made in the experimental studies, the fact remains that tht(?] V\t/e consltjter a dlscrtetde zetc?f {oom:/\;)n Itht? ll'r:ﬁ conr)etctmg
scaling exponents have been deduced by looking at scalir]%/e ”\:\; ?rpg:gt;nscip?rrgne] on)(/a ;SngmgQ re a er ? p0|)n s
regions extending over litle more than one decader in \borer = " \ve start by assuming’ tﬁﬁ -(‘51,)’\)“0231*)’6
[3-6]. This leaves open the possibility that a small but Sig'approxipn+alted by o
nificant departure from strict power-law scaling is still con-
sistent with the data. We will argue that this possible depar-
ture is sufficient to allow the observed anomalies in the .
exponents to be nothing more than a transient effect related Pn(v,—v0)= f doy,
to intermittency and that the true power-law scaling occurs 1J-e
only on larger scales. This very large distance scaling could _ _
take the form proposed by Kolmogorov. XPry vy Pl mve) (D
We shall present a model that predicts deviations from
power-law scaling and shows that these deviations may be L
small enough to have escaped detection thus far. The mod¥fith JZP(y)dy=1. We assume that the set of poin{sis
is based on a simple physical picture for the effects of intercharacterized by a scalp such that Ip)°=], where
mittency, which are effects due to the coming and going ofl =1:2,--..,N+1 anda is a positive constant to be deter-
coherent structures in the velocity field. We will model themme_d beloyv. The integration over all velocities at the mtert
effects that these structurdéeddies have directly on the Mediate points may be thought of as a sum over all paths in
probability distribution function(PDP for velocity differ-  the space of velocities that start &§ and end at,. We
ences. We are claiming simplicity in our approach, but notcould thus refer to Eq1) as a path integral. But note that we
uniqueness. Thus the applicability to three-dimensional hyefrain from taking the continuum limiN— o with r fixed
drodynamical turbulence in particular could be consideredince the scal@ has a physical significance. _
speculative since the model makes no mathematical contact The discretization of the range from Ottanto subregions
with the Navier-Stokes equations. On the other hand, wheffj.fj+1) is associated with our modeling of intermittent be-
the consequences of the model are explicitly worked out thef@vior. Roughly speaking, we are suggesting that the coming

are found to coincide rather well with the data. and going of eddies, of sizes comparable to subregion size
rj+1—rj, produce avariable volatilityin the typical velocity

differenceSUer—vrj. We make this statement precise by
*Electronic address: holdom@utcc.utoronto.ca writing 7?(vrj - u,H) as a superposition of Gaussians, where

—

P(Ur_UrN)
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we integrate over all values of a volatility parametgr,
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gions.p should be typical of scales on which viscosity influ-

which is itself weighted according to a Gaussian. To simplifyences and damps the formation of eddies. As sudh ex-

notation we denoterj =X,

© dSJ
P(xj—xj_l)zf_mPGausgsja,xj—xj_l)exp(—sf)JT_W,
()
P — < 3
Gaus§ 0, X) = \/Ea'ex _ﬁ . 3

The consideration of large and small values spfcorre-

pected to lie between the dissipatig¢€olmogoroy scaleyn

and the lower end of the inertial scaling ran¢ibe latter
range being characterized by the absence of viscosity ef-
fecty. Note that if 0<a<1 then the size of the subregion
ri+1—r;j, and thus the relevant eddy size for that subregion,
would increase witlj.

We proceed by inserting ER) into Eq.(1) and integrat-
ing over thex;. We can write the terms in the exponential
that depend ony=(X;,Xs, ...,XN) IN matrix notation
y"™My+Jy, whereM is a matrix andJ is a vector, with the
latter depending orx, and Xy, ;. We may complete the

sponds to the possible presence or absence of eddies in trguare and do the Gaussian integrations gvéor various
subregion at various times. Note that the variance of botfyalues ofN. From this we are able to deduce a simple result,

P(Xj —X; ~1) andPgysf0,X) is .

where all now resides in

N+1.2

dependence on the;

Equation(1) is constructed to give the cumulative effect SZEEjzl s; . Thes; integrations for fixedS then just give
of the variable volatilities occurring in the various subre-the surface area of aN(*+ 1)-dimensional sphere

N-+1
Pn(Xn+17X0) = W[E f_md%

1 27T(N+1)/2
T o(2m)NPL N+1
r 2

N2 o
UL i o

N+1
2

0

0'\/;1"

In the last step we have defin@i=5%(N+1) for conve-
nience.

1 Xne1—Xg)2 1.
Lo - G X7 g,
S 2022 2

(XN+1_X0)2

LSZ
20282 2

f déé“lexp( —
0

v \2
(XN+17X0) 1SZ(N+1)). @

© 202R(N+1) 2

this senser is an “evolutionary” time scale depending on
the distance scale. There is also a dynamical time scale

Finally, we will take this result and analytically continue associated with scale, the eddy turnover time, which is

from integer value®l + 1 to positive real values. Replacing
N+1 by 7=(r/p)? gives[7]

(T/Z)(T* 12 rop
—f dSSZex;{ -
U\/;F(T/Z) 0

(5Ur)2 1

—827').

20227 2
(5

We note that for large the integral oveS becomes strongly
peaked abous=1 and thus

P/(60,)=

Pr(dv;) —

1
ex
10O\ 2TT

In addition we findfor any 7, that the variance in the veloc-
ity differences is

(6)

20°T

(5Ur)2>

((8v)2)=0?r=0?(1Ip). @

simply r/v, wherev is a typical velocity observed on scale
r. If we associater with o+/7 from Eg. (7) and if the evo-
lutionary and dynamical times happen to scale witin the
same way, then we obtaim=2/3. This gives the standard
scaling law((v,)?)or?3,

We now perform the integral ove3 and rescale the PDF
such that the variance is unity for ail We obtain

7_[1/4](l+ T)

\/;2(1/2)(771)1"(% ’T)

P.x)= IXA2=DK 41y (X 7).

8

K,(y) is the modified Bessel function of the second kind. In
Fig. 1 we displaylsr(x) for various .

When 7 is an even integei? (x) is an exponential times
a polynomial inx and in particular forr=2 it is purely
exponential P,(x) = exp(— |x|\2)/y2. For r<2 the PDF is
even more strongly peaked and it decreases less quickly than

The variabler controls the evolution of the PDF, in the sensean exponential*‘stretched exponential before becoming
that evolution through unit steps inare generated by suc- purely exponential at large enough For 7>2 we have

cessive application of the “evolution operator” in E®). In

“deformed Gaussians” with exponential tails. For any
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FIG. 1. logd P(x)] vs x for 7=1/2,1,2,4,8,16,32 from top t0 k1. 2, ¢, (r) vsn for r/p=10,20,40,80,160 from bottom to top.
bottom.  The curves are vertically displaced by The gashed line ig,=n/3.

0.5,0-0.5,—1,—-1.5,—2,— 2.5, respectively.

A which yields3t=n/9+2—2(2/3)"3 and is known to fit the
7, dInP(x)/dx — — /7. Alternatively we may consider current data quite well. We may phrase the agreement in
n = N _ . . terms of the relative scaling exponenfg/{3, which are
momentsM 7= [P (x)|x|"dx, which are all finite and given nown to better accurac3—6] than the individual expo-
by nents and for which the facterin Eq. (10) cancels. We find,
for example, that{,(35p)/{3(350) as a function ofn is

F(E r n+tr within a few percent of the corresponding She-Leveque val-
M= 2" 2 2 @ uesup ton=30! Asr varies from 20 to 50{4(r)/Z5(r), for
L T : example, varies from 1.72 to 1.82, compared to
F(g) SYe5t=178.

To see the dependence of the structure functions them-
The approach to the exponential tails is reflected inselves we displag,(r) in Fig. 3. Over some range ofthe
MY (n+1)M" — 1/ lines appear to be close to straight. But other than for
n—o n=2, which is exactly straight, the lines have a positive
It is common to describe the evolution of the PDF with cyrvature that increases for largerWe will see below how
r in terms of the generalized structure functions, defined byhese positive curvatures or, equivalently, the scale depen-
Sa(r)={(|8v,|"). Forr in the inertial range it is usually as- dence of the scaling exponents may be rather subtle to ob-

sumed tha,(r)or ‘. Our model suggests that exactly scaleserve experimentally. But first we must consider the effects
independent exponents do not exist for the typical ranges adf viscosity on the structure functions.

r considered and that instead we should consider the local We expect that the effects of viscosity will cause

exponents,(r)=dIn[S,(r)J/dIn(r). We obtain =(r/p)?® to be replaced by a functiof(r) that deviates
from (r/p)?® asr approaches the dissipative scajefrom
a 1 1 above. Since a decreasingcorresponds to increasing inter-
=_- s(n+7)—V¥ (3 . . . . .
&n(r) 2 AV G+ ) =Y (z7], (10 mittency and since the cause of intermittency in our

whereV is the digamma function. This gives(r)=a, and
in the larger limit {,(e°)=an/2. The latter is Kolmogorov 10
scaling whena=2/3. Although we adopt this value @f in
the following, we leave open the question of whetheis 8 8
exactly equal to 2/3 or just close to[R]. We also stress that
we are describing only the symmetric part of the observed
PDF, which in the case of the PDF for longitudinal velocity
differences also has an asymmetric part. This asymmetry is
reflected by the nonvanishing of the structure functions
(6v|) for oddn. In particular our{s is not the same as the 2
scaling exponent ofdvf,), which is constrained to be unity 2
[2,9].

In Fig. 2 we display,(r) for variousr and compare it to 0 i 3 3 4
the larger limit values {,=n/3. The main point is that the log;o(r)
scaling exponents approach their asymptotic values very
slowly. It is also of interest that for some rangerép, our FIG. 3. logd S,(r)] vs log(r) with p=1 for n=2,4,6,8,10

exponents are realistic for a wide rangenofWe show this  from bottom to top, each line vertically offset so as to vanish at
by comparing them to the model of She and Levefl@, r=1.

log;olS, ()]

e
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INTERMITTENCY AND THE

picture—variable volatility of velocity differences—should
be damped by viscous effects, we expect thaf should
start to decrease more slowly thar £)?°. Thus the evolu-

tion of the PDF shapes is retarded by viscous effects in th

“intermediate viscous range,” the range obetweeny and

the start of the inertial range. The implication is that at large

scales in the inertial range whefér)=(r/p)?? it is likely
thatp> . We may also expect that » grows with the size
of the intermediate viscous range.

For very smallr where the velocity field is smooth the
variance is evolving like?, faster than in the inertial range,

and thus there must clearly be a decoupling between th

evolution of the PDF shapes and the evolution of the PD

variance. We are thus led to a generalization of our model

where we replace the expression in E5). by [11]

f:dsé

Szf(r)).

[f(r)/z][f(r)fl]/Z
Nag(r)/f(r)T(f(r)/2)

p( (6vp)? 1
xXexp —

25%g(r) 2
This new PDF has the property thgiv,)?)=g(r) and thus
we can useg(r) to reproduce the observed behavior of th

(r)-2

Pr(év,)=

11

variance even in regions where viscosity or finite-size effect

are important. The functiof(r) determines the evolution of
the PDF shapes; that is, the pres@p(x) is obtained from
the one in Eq(8) by replacingr with f(r).

We will illustrate the effects of viscosity with specific
choices for f(r) and g(r). We consider f(r)
=([r+p— 7]/p)?", which is unity atr =5 and approaches
(r/p)?? at larger [12]. For g(r) in the rangep<r<10y
we consider

g(r)=[c,— Cze[l—r/n]/c4_ 036[1—104( n/r)]/c5](r/ 7])2/3.

We take two examples forcg,c,,C3,C4,C5) that idealize
typical data setsg,(r) with (80,79,60,10,5) having a rela-
tively large inertial range(large Reynolds numbgrand
g,(r) with (80,79,70,5,30) having a small inertial range. Our
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FIG. 4. logdS,(r)/rénG®)] vs logg(r) with =1 for
n=3,6,8,10 from bottom to top. The solid and dashed lines corre-
spond tog,(r) andg,(r), respectively.

range and the ordem are both large enough. The figure
makes it clear, though, that it is a small effect that may be
hidden in present data.

Our model may also be used to illustrate “extended self-

eSimilarity” [15,6]. In Fig. 5 we plotS,(r) versusS;(r) for

&<rin< 10* for the two caseg);(r) andg,(r). For com-
parison we add straight lines with slopes given by the rela-
tive exponents,(35p)/¢3(350). We see that scaling has
been extended to smaller scales than is apparent in Fig. 4.
Similar results are obtained for other choices of the functions
f(r) andg(r). It thus appears that such plots are not very
sensitive to the deviations from the power-law scaling we are
proposing.

We reiterate that the model yields a universal sdboél
scaling exponents and the scaling exponent from an experi-
ment depends on what distance scale, effectively, the local
scaling exponent is being measured relativeptoOn the
other hand, if it is true that/ » increases with the size of the
intermediate viscous region, as we are suggesting, then it
may be difficult to obtain measurements at distances, in units
of p, that are very different from each other. The variability

results are not very sensitive to precisely show how these

functions deviate fromr??® behavior outside the inertial

range. Note that the intermediate viscous range is larger for

g4(r) [13]. Due to our expectation that should increase

with the size of the intermediate viscous range, it is natural

that p;>p,. For illustrative purposes only, we choose
p1=4.3n andp,=1.3.

With this input we can extract all higher-order structure
functions from Eq(11). The scaling in the inertial range for
both cases turns oybecause of our fortuitous choice pf

and p,) to be described by the realistic scaling exponents

£,(35p) from Eg. (10). We show this in Fig. 4, where we
plot S,(r)/rénG%) [14]. Of most interest are the=8,10
curves for theg,(r) case, where we se@ery slighy evi-

dence of a double-hump structure growing more prominent

with increasingn. This positive curvature in the middle of
the scaling region is arising from the positive curvatures in

10g IO[Sn (r )]

4 4.5 5

logolS5(r)]
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FIG. 5. logd Sa(r)] vs logd Ss(r)] for 4<r/5<10* and for

Fig. 3, which in turn is a reflection of the gradual approach ton=6,8,10 from bottom to top. The lines for thg(r) and g,(r)

Kolmogorov scaling. This is the generic signature of ourcases are displaced by 0.5 ant0.5, respectively. The dashed
model, which should be seen when the size of the inertiatraight lines have slop&$,(35p)/{3(35p).
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in the scaling exponents is also obscured if different experihow evidence for a slow approach to Kolmogorov scaling
ments have intermediate viscous regions of similar sizeould eventually be uncovered. We should also differentiate
and/or if one is confined to the lower-order structure func-petween the evolution of the PDF shapes as a functian of
tions, such as=6 and below. (to which the structure functions are sensitig@d the basic
We have seen how viscosity and finite-size effects camet of shapes predicted by the model, given in @j.and
have the effect of transforming the structure functions in Figdepicted in Fig. 1. These probability density functions may
3 into the structure functions in Fig. 4, which in turn display pe of interest in various other contexts.
extended self-similarity in Fig. 5. It is also encouraging to
find that realistic values of the scaling exponents emerge | thank Brian Smith for discussions. This research was
when thep parameter is within the intermediate viscoussupported in part by the Natural Sciences and Engineering
range. But perhaps most important is that the model suggesResearch Council of Canada.
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